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ABSTRACT
Computer users are generally authenticated by means of a pass-
words which are often forgotten and written down. Replacement is
expensive and inconvenient. Stubblefield and Simon [1] proposed
using an inkblot as a password cue to reduce the incidence of pass-
word forgetting. Is this mechanism feasible? In this paper Iwill
outline two experiments carried out in order to determine viability
of these images as password cues.

1. INTRODUCTION
Computer users need to authenticate themselves, mostly by means

of a secret password. People have to remember multiple passwords
and since human memory is fallible, people forget their passwords,
and need reminders or replacements.

In this paper the issue of password cueing is addressed. This
term may seem to be an oxymoron since passwords are a security
tool, and need to remain secret. Cues could tear a large hole in
the security ostensibly maintained by the password, if not carefully
chosen.

Stubblefield and Simon propose that cues could be provided in
the form of an abstract inkblot-like image which makes the cue
itself is so obscure and vague that it acts as a cue only to the le-
gitimate owner of the password. The viability of this proposal can
only be proven if two questions can be answered in the affirmative:

1. is the inkblot the best possible image to use as a cue?

2. will users make use of the inkblot if it is provided at authen-
tication?

In Section 2 secret-based authentication is reviewed. Section 3
confirms the potential of images as cues and explores the kinds of
images that could serve as cues. Section 4 outlines the methodol-
ogy followed in order to identify the best cueing image. Section
5 presents the results and identifies the best image type in order
to answer the first question posed above. Section 6 reports onthe
experiment that tested the use of the best image type as a cue dur-
ing authentication, which answered the second question. Section 7
concludes.
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2. AUTHENTICATION
In order to grant access to a restricted digital space, a two phase

protocol is used: identification followed by authentication. In the
face of fallible human memory and insecure communication chan-
nels this tends to fail, so that passwords have to be replaced[2],
which presents problems.

The replacement process weakens the mechanism because a re-
placement key has to be delivered in some way and this delivery
can be intercepted by an intruder. If challenge questions are used
instead of a straight replacement the authentication mechanism is
weakened unacceptably because of the difficulty of choosingques-
tions. If the user has to generate the question he or she/he isequally
likely to forget the question as the password. If the system has a set
group of questions these need to be applicable to a wide rangeof
users. Site owners resort to setting widely applicable questions and
only a relatively superficial knowledge of the legitimate user is of-
ten required in order to discover the answers to these questions.

The replacement has to be funded. Gartner [2] claims that a sin-
gle replacement costs between $15 and $30 and each employee will
call about 5 times a year. A cheap alternative is simply to send peo-
ple their passwords by email, but since email is seldom encrypted,
this option can only be used for insecure systems, and only where
people haven’t forgotten their email password.

The ideal situation would be for a suitable cueing mechanismto
be identified which could help users to remember their passwords
hence reducing the incidence of password replacements.

2.1 Cueing Mechanisms
A cue can be defined as: a. A reminder or prompting, or b. A hint

or suggestion. A cue heard by someone other than the person for
whom it is intended, therefore, could produce the same association
or act as the same reminder as it was intended to elicit in the target
person. In authentication such a universal cue is useless since it
undermines security. A cue used in an authentication setting needs
to be deliberately obtuse.

Hertzum [3] proposes that users specify particular password char-
acters which will be displayed at password entry in order to jog
their memory. This idea was tested with 14 users and it did help
them to remember their passwords. He notes that the defined pass-
words were often weak and some kind of cueing mechanism is re-
quired in order to support the use of longer and stronger passwords.

The proposed inkblot cues rely on the fact that there is strong
evidence that pictures are more memorable than words, ie thepic-
ture superiority effect[4]. A purely representational image will not
work in this secure context because what one really needs is an im-
age that elicits a different textual association from different users so
that intruders cannot confidently guess textual associations within
the three strikes allowed before a lockout.



Stubblefield and Simon [1] experimented with using inkblotsto
assist users to form a semantic association with the textualpass-
word, which could be used as a reminder mechanism as required.
They displayed 10 inkblots in a particular sequence. For each blot
the user was required to enter two characters — the starting and
ending character of their inkblot description. They had some suc-
cess in trials of this mechanism, achieving an entropy of 4.09 bits
per character. However, the cognitive load imposed on the user is
significant. They do not merely provide a textual description; they
have to parse it in their minds to extract the required starting and
ending character, and then type that in. Stubblefield and Simon
do not give demographic information about their experimental sub-
jects but one can envisage this cognitive load being untenable for
any but the most mentally agile of users. Lab-based studies often
deliver unrealistic results. One can only reliably conclude the via-
bility of a mechanism by means of a test “in the wild”, where users
have to actually use the mechanism to access a protected resource.

Our first question requires us to determine what kind of image
could best support cueing activity in an authentication setting. We
need to find out what characteristics this image would have toex-
hibit to facilitate superior recall and low predictability. The image
descriptions would also have to be more durable than random tex-
tual passwords in order to improve the current situation.

A series of experiments were conducted in order empiricallyto
verify the use of images in this context. Before discussing our ex-
periments, we need first to discuss different image types andthe
effects of human vision on the image choice.

3. HUMAN VISION
One of the most vital of the human senses is vision. When an

object is seen, the viewer will compare that object to an internal
“database” of objects within his or her mind, and use past expe-
rience to match that object with the object being seen in order to
identify it. Thus visual perception interacts with perceptual pro-
cesses but also with memory, reasoning and communication [5].

This research considers the use of images as cues. In order toact
as a cue in an authentication environment, the image must have the
following characteristics:

1. Ambiguity— The image cue should mean different things to
different people.

2. Efficacy— Human memory for pictures and their textual de-
scription needs to be superior to word memory so that the
cueing mechanism excites a durable association. Further-
more, the textual description needs to be strong enough to
act as a password.

The following two sections address these concepts in greater de-
tail.

3.1 Ambiguity
The Gestalt psychologists formulated a set of laws of organisa-

tion that help us understand the perceptual filling-in process. The
laws relate to [6]:Closure, Good Continuation, Proximity, Similar-
ity, Relative Size, Surroundedness, Orientation and Symmetryand
Common Fate. Ambiguity requires images that are vague in terms
of the Gestalt laws.

We need a way to describe different candidate image types so
that we can arrive at a particular description of an efficacious im-
age type that can act as a cue. Alario and Ferrand [7] classified
a number of images and propose the following norms to describe
them:

• Name agreement— the degree to which the people agree on
the name of the picture;

• Image agreement— the degree to which the person’s mental
image matches the picture;

• Familiarity — the familiarity of the concept being depicted;

• Visual complexity— measuring the number of lines and de-
tails in the picture;

• Image variability— indication of whether the name of an
object invokes many or few images for the object.

These norms will be used in later sections to delineate the kinds
of images the cueing application requires. Obviously representative
images have high name agreement and this disqualifies them. We
are left with the broad class ofabstract images. If we are able to
identify such a suitable image class, our next concern is theefficacy
of the textual description a particular image member of thatclass
will elicit, in terms of acting as a password cue.

In addition to abstract images,human faceswere included in the
experiment. The face is a special image as far as humans are con-
cerned. Humans can identify thousands of faces without difficulty,
suggesting limitless and durable memory for faces which could be
exploited.

3.2 Efficacy
Efficacy encompasses more than one aspect:

Descriptiveness— Humans should have the ability to describe the
pictures in a textual format — this is termedpicture naming.
Strength— The text association needs to have either length or com-
plexity, which make it harder to break.
Memorability & Durability— The text association should be durable
in the sense that users are able to reproduce it perfectly after a time
lapse.

3.2.1 Descriptiveness
The central premise of this research has been that we can relyon

the previously-mentioned picture superiority effectaccompanied
by reliably retained textual descriptions.An abstract imageis more
expressive than a representative image, and does not have a simple
label, but requires interpretation and verbalisation. Forexample,
consider the process involved in assigning a name the inkblots. Ra-
paport [8], referring to the Rorschach inkblot verbalisation process,
argues that such a process is an“association process initiated by
the inkblots as stimuli”(p91). The results of the association pro-
cess need to be converted to language, and this process is highly
dependent on individual factors [9]. Hence even if two people per-
ceive a particular image as belonging to the same semantic class
they are likely to verbalise it in slightly different ways. It is hoped
that these individual differences will lead to syntactically different
picture descriptions and therefore distinctly different passwords.

3.2.2 Strength
Passwords are generally broken in one of two ways if there is no

cue: brute strength or dictionary attack. The former only works if
the password file can be obtained and is very time consuming. Most
would-be attackers will try the dictionary attack and only resort to
brute force if that fails. The dictionary attack exploits the fact that
most people will use a recognisable word in their own language and
works its way through dictionaries until a match is found.

To make it harder for a dictionary attack to succeed we need to
make the password less susceptible to this kind of attack. There are
two ways of doing this — either by making the password longer



by using more than one word or by making it more complex by
including numeric and other special characters.

Since we’re asking people to describe non-representational im-
ages, we would expect to see longer passwords, which will con-
tribute towards strength. Furthermore, there is evidence that previ-
ously seen pictures are named faster than new pictures [10].Hence
by timing responses a system may be able to infer that a possi-
ble intrusion attempt is underway. Since abstract images may well
initiate the same semantic association in the legitimate user and
the intruder, but a slightly different syntactical conversion is pro-
duced, the best way to prevent an intruder from trying different
possible descriptions until he or she succeeds is by judicious use of
the “three tries lockout” policy.

3.2.3 Memorability & Durability
The picture superiority effect states that humans rememberpic-

tures better and for longer than words. Psychologists have demon-
strated this with a number of experiments [11, 12, 13]. Humans,
having seen an image once, will readily be able to attest to the fact,
and this effect is stronger than word-related memory effects.

That said, it must be borne in mind that all these experiments
have testedrecognition memorywhereas the use of cueing images
requires the use ofrecall memory. Recognition relies on the per-
son identifying a previously-seen picture, usually from a group of
pictures. Recall requires the person to re-generate the name of a
previously-seen picture. There is some evidence that people recall
picture names for a long time. Cave [14] found that a single expo-
sure to a picture could be detected even after 48 weeks by examin-
ing naming response times at subsequent exposure to the image.

3.3 Summary
Two characteristics images need to exhibit in order to use them

for cueing have been identified:ambiguityandefficacy. In order
to satisfy the first requirement a number of abstract image classes
were tested. A number of images from each of of these image
classes were used in order to determine efficacy of the class,by
analysing and testing the following:

1. Descriptiveness— to what extent is it possible for people to
assign a name to the image?

2. Strength— measured in terms of length of the description,
the character distribution of the responses, and the entropy of
the description. This is reflected byLow name agreementand
high image variability, which tests whether different people
provide the same names for the image or whether descrip-
tions differ.

3. Memorability & Durability — How durable are the image
text associations? Memorability is directly related tohigh
image agreement— a stronger single mental image will lead
to higher likelihood of the user remembering the image de-
scription.

4. TESTING DIFFERENT IMAGE TYPES
The most suitable images for testing are those that exhibit the

required level of vagueness in terms of the Gestalt laws [15]dis-
cussed in Section 3.1.

As explained in Section 3.3, we require images that havelow
name agreement, high image agreement, arevisually complexand
those for which it is possible to come up with a memorable textual
description. Our images are shown in the Appendix. The relation-
ship between the image classes and the Gestalt laws is shown in
Table 1.

Faces— Humans are famously good at remembering faces. [16]
Whereas memorability is clearly not an issue, durability might well
be. Chance and Goldstein [17] conducted an experiment to deter-
mine whether previously assigned verbal labels would be recalled
after a time lapse. They found performance in recalling verbal la-
bels to be weak and unreliable with only 35% of verbal labels being
recalled correctly. However, despite this faces were included to see
whether their finding was replicated.
Fractals— Singh [18] quotes Works as saying that fractals are ap-
pealing to humans due to their innate aestheticism.
Inkblots— Stubblefield and Simon [1] used Rorschach-type inkblots
[19], and gained good preliminary results.
Snowflakes— Snowflakes were used by Goldstein and Chance [20]
as part of a larger experiment measuring recognition ability but no
work has been performed to study users’ descriptions of these im-
ages.
Textures— The Texture image type was chosen because of their
intrinsic variety: smooth or rough, coarse or fine as well as having
regular or irregular patterns.

A web-based application presented participants with the images
shown in the Appendix and elicited a textual association foreach.
Users could skip images. The results of the subsequent analysis is
reported in the following section.

5. RESULTS
The user could choose not to provide an association for an image

and this was taken as an indication that the image was too difficult
to describe. This serves as an implicit subjective measure related to
the ease of forming an association. In this section we refer to image
n wheren is the image presented in the Appendix.

5.1 Descriptiveness
Each of the 49 users was presented with 30 images, 6 of each

image class, and prompted to enter a description. We gathered
1355 non-null responses (Faces: 278, Fractals: 272, Inkblots: 270,
Snowflakes: 257, Textures: 278). The textual descriptions assigned
to image 14 give a good example of the range of responses we
obtained:butteroad, demented frog, mangled butterflyandangry
clown, among others.

We found that there was a statistical difference in the number of
responses we received from users based on the image class, F(1.83,
535.4)=15.53,p < 0.05. The snowflake class had a significantly
lower rate of responses. The face and texture classes had higher re-
sponse rates. There werenostatistical differences within the image
classes for any particular images within their class,p > 0.05. The
face and texture images were the easiest to form associations with
and snowflakes the most difficult. The analysis considered only
non-null responses.

5.2 Strength
A long description will not necessarily act as a strong password;

one needs to consider the entropy of the description and the vari-
ability of the responses.

This section therefore considers the responses in terms ofstrength
from length(response length),image variability(character distribu-
tion and informational entropy) andname agreement(predictabil-
ity).

5.2.1 Response Length
This is a useful simple indicator of security. The results ofthis

analysis are presented in Figure 1 and can be summarised as Faces
(M=16.6, SE=0.83), Fractals (M=18.3, SE=1.1), Inkblots (M=18.3,
SE=1.0), Snowflakes (M=15.3, SE=0.7) and Textures (M=12.1,SE=0.5)



Image Type Closure Continuity Proximity Similarity Symmetry

Faces
√ √ √

Fractals
√ √

Inkblot
√ √ √ √ √

Snowflakes
√ √ √ √ √

Textures
√ √ √ √

Table 1: Image Classes & the Gestalt Laws

Figure 1: Response Length By Image Class

The response length is significantly affected by the image class,
F(3.6, 1000.5)=12.414,p < 0.05. The length of the response is sig-
nificantly shorter for textures than for all other image classes. An
extremely simple snowflake with few “rays” had significantlylower
response character length (M=13.02, SE=1.83) than a compara-
ble snowflake with many rays (M=19.1, SE=1.93) indicating that
overly simple images may result in simple responses, F=(4.16,99.96)=2.85,
p < 0.05. The type of image shown to the user is important as
different image classes can encourage users to provide longer re-
sponses.

5.2.2 Image Variability
Character Distribution

The character distribution of the response gives an idea of how pre-
dictable the responses are. We discovered that the responses closely
parallel that of English, unsurprising as all the participants were
English speakers.

Informational Entropy
The informational entropy of responses gives an indicationof the
image variability of the image. The entropy of the information in a
signal, as defined by Shannon[21], specifies how much uncertainty
or “randomness” exists within the signal. Specifically

H(X) = −
n

∑
i=1

p(Xi)log2p(Xi)

whereH(X) is the entropy of the signal X in bits,Xi is a token in
the alphabet ofX represented by 1..n and p(Xi) is the probability
function representing the probability that the token will appear in
the signal. The probability function used in this case is a simple
weight based on the character frequencies within the textual as-
sociation. As entropy within the signal increases it becomes less
predictable and, as such, the more difficult it becomes to guess the
content. Here we represent the entropy of a textual responseby the
average number of bits required to encode each character using an

encoded string. For comparison; a standard ASCII keyboard has 95
printable characters (including the space character), this results in
an upper bound on textual entropy of 6.57 bits per character.The
lower bound for entropy is clearly 0 bits per character for a string
composed entirely of a single character; since the next character in
the string is always predictable. This entropic view of textual pass-
words essentially measures the extent of the usage of the available
character set.

The results of entropic analysis of the responses are summarised
as follows; Faces (M=3.1,SE=0.01), Fractals (M=3.1,SE=0.02),
Inkblots (M=3.1,SE=0.02), Snowflakes (M=3,SE=0.01)
and Textures (M=2.9,SE=0.01).

Figure 2: Bits per Character

Figure 2 shows that the texture image class is the only class
with a significant difference in the number of bits per character,
F=(4,1108)=5.49,p < 0.05. The snowflake with the highest num-
ber of rays had a significantly higher number of bits per charac-
ter (Image 22: M = 3.28, SE = 0.04) than three other snowflakes
(Image 20: M = 2.93, SE = 0.002),(Image 21: M = 2.89, SE =
0.05),(Image 24: M=2.93, SE=0.05), F(4.11,197.285)=4.083, p <

0.05. There were significant effects between individual images
within the textures class which was caused by a single image,of
a leaf (image 28), which had a significantly lower number of bits
per character (M = 2.62, SE = 0.07). There were two textures
with high amounts of repetition which had higher than average
bits per character for the textures image class (Image 29: M=3.00,
SE=0.06),(Image 30: M=3.08, SE=0.04), F(3.753,180.12)=5.508,
p < 0.05.

The number of bits per character is essentially the same for most
image classes (except textures) and the length of the response is
the largest contributor to the number of bits per response (ie. total
entropy) and therefore the overall security of a particulartextual
association.

5.2.3 Name Agreement
We can measure name agreement using the Smith-Waterman[22]



algorithm to measure local optimal alignments between strings.
These alignments correspond to local similarities betweenstrings
and are a useful measure to locate instances where the strings have
similar sections — thus measuring the similarity between two strings.
A heuristic approach was used to determine a normalised score for
each class of images normalised by response length.

The analysis shows that the Smith-Waterman score is signifi-
cantly affected by the image class, F(1.79,496)=1487,p < 0.05.
The results show that inkblots have the lowest average Smith-Water-
man score (least similarity) followed by fractals, snowflakes, faces
and finally textures.

Analysis of the Smith-Waterman scores for individual images
reveals that within the face class any images with distinctive fea-
tures (such as images 1 and 4) score higher (more similar) Smith-
Waterman scores as these features are more readily commented
upon within the user’s response, F(1.905,91.45)=36.567,p < 0.05.

Two highly symmetrical fractals (images 7 and 11) had signifi-
cantly higher Smith-Waterman scores than the other fractals,
F(1.725,85.62)=23.66,p < 0.05. There was a third symmetrical
image within the fractal class (image 12) that did not score simi-
larly so the reasons for these particularly high scores is unknown.
There was a significant decrease in Smith-Waterman scores for the
inkblots with high density distributions of blots (images 13, 14 and
17) as compared to the more evenly distributed inkblots (images 13,
14 and 17), F(1.74,83.52)=42.196,p < 0.05. The snowflake class
exhibited significant differences in the Smith-Waterman scores,
F(1.53,73.565)=66.757,p < 0.05. The two least complex snow-
flakes (images 19 and 21) had significantly higher (more similar)
scores than all other snowflakes followed by the two most com-
plex images (images 20 and 24). Interestingly the lowest Smith-
Waterman scores were for images 22 and 23 which were generated
using either the maximum number of rays or the maximum com-
plexity but not both. The images within the texture class were also
found to have significantly higher Smith-Waterman scores for eas-
ily identifiable textures (images 28 and 29), F(1.268,60.878)=193.984,
p < 0.05.

In conclusion, the inkblot images scored best in terms of having
a low name agreement, followed by snowflakes while textures had
the highest level of name agreement.

5.3 Discussion
The Inkblot and Fractal classes are particularly good performers

for all metrics while Texture and Snowflake classes perform poorly
(except for name agreement for the latter)

The bits per character for each image class was essentially the
same — indicating that response length was the primary factor
when determining the security of the image description. Hence for
the majority of our experiments there was no appreciable differ-
ence betweenindividual images within the image classes, whereas
there were many differences across class boundaries. The exper-
iment which assessed durability of descriptions is reported in the
next section.

Our experiment indicated that the elicited responses are suffi-
ciently secure to provide a viable cueing mechanism. Inkblots and
fractals have the potential to serve as password cues. This answers
our first question: inkblots are indeed suitable cueing images. The
next question: “will users use them?” can only be answered by
means of a longitudinal experiment.

6. INKBLOT AUTHENTICATION
A website was developed for an elective module which gave stu-

dents access to lecture notes, grades and other resources. Atotal
of 53 undergraduate students used the website. Users were ran-

domly assigned to the password or inkblot conditions. The inkblot-
assisted authentication process had the following phases:

1. Registration: users were given a user name and registration
code, by email, to facilitate the registration process. Thesys-
tem either required them to choose a password or displayed
a inkblot, and allowed the user to customise and tailor the
inkblot, as illustrated in Figure 3. The user was then in-
structed to give an inkblot description as a password. The
inkblots were comprised of 5 elements: (i) a randomly se-
lected seed, (ii) the maximum diameter of blots on the can-
vas, (iii) the number of blots on the canvas, (iv) the distance
between blots and (v) the number of colours in the inkblot.
When the user is happy with their choice of inkblot the sys-
tem simply saves these 5 parameters which can be used dur-
ing authentication to regenerate the inkblot. The users were
permitted to tailor the inkblot so as to ensure that they were
not presented with an inkblot that they found it impossible to
create a textual association for. If they were presented with
a inkblot they considered to be obscure, they could either re-
quest a brand new one or tailor that one until they felt they
were able to create an association.

2. Authentication: The users entered a user name and were di-
rected to the authentication page. In the case of password
users a simple password text entry area was supplied. In the
case of inkblot users “their” inkblot was displayed and the
user could re-enter the original inkblot description.

3. Replacement: users could request a re-registration from the
website administrator by email if the password had been for-
gotten.

Figure 3: Choosing a Inkblot at Enrolment

The experiment ran for 9 weeks and all accesses were logged.

6.1 Results
A total of 53 users used the site. Of these, 24 were allocated

to the password condition and 29 to the inkblots. One user from
the password condition needed a password reset during the course



of the experiment and both the original and replacement passwords
are included in the analysis; no inkblot users requested a replace-
ment password.

We encountered six instances of people who deviated from the
instructions provided for their condition. Two password users used
the registration code as their password. Four people chose to ig-
nore their inkblot, instead providing a password or pass-phrase of
their own choosing. These passwords/descriptions were retained
throughout our analysis. Examples of descriptive passwords given
by inkblot users are:scarypumpkin, bunnysplat, blob, somethinand
mask.

The next two sections will consider the findings related to inkblot-
assisted authentication in terms security and ease of use.

6.2 Security
When discussing the security of an authentication scheme based

on textual input the first measure considered is typically the length
of the password and itscharacter complexity. That is to say: longer
passwords with larger choices of available characters (i.e. lower-
case and uppercase letters, numbers and special charactersinstead
of just lowercase letters) will result in much more secure pass-
words.

Password Length
There was no significant difference between passwords (M: 7.52,
SE: 0.332) and inkblots (M: 8.31, SE: 0.632),p > 0.05. Similarly
when we evaluate the mean number of bits required per charac-
ter for passwords (M: 2.49, SE: 0.09) and inkblot descriptions (M:
2.64, SE: 0.11) we find that this, too, is not significant,p > 0.05.

Password Guessability
We also have to consider how similar descriptions are to eachother
and to what extent they have similar substrings.

We used the Smith-Waterman algorithm[22], which is designed
to do local sequence alignment. This allows us to measure the
longest common sequences between strings (i.e. common uses
of words such as “ the ”), in this case a higher score indicatesa
longer sequence and thus alower score is desirable. We found
that inkblots (M: 0.08, SE: 0.005) had a significantly higherSmith-
Waterman score than passwords (M: 0.05, SE: 0.006), t(48.85) =
-4.088,p < 0.05, which indicates that users often include a larger
subset of common words within their inkblot descriptions than with
traditional passwords.

The next section analyses the users’ performance at using inkblot-
assisted authentication in the context of time and effort required as
well as login success rates.

6.3 Ease of Use
In this section the results gathered from the experiment arere-

ported to give an indication of the user’s experience of using the
inkblot system as compared to the traditional password system.

Registration
Users were were sent a registration code by email, which allowed
them to access the site. In our experimental system the password
condition was a simple password entry prompt in the traditional
style (users were asked to enter the password twice to confirmits
correctness). By comparison, since users were allowed to design
their own inkblots an inkblot designer was implemented as part of
the registration process. This resulted in users spending consid-
erable time designing their inkblot, inflating the registration time
(seconds) for the inkblot condition (M: 256.03, SE: 71.364)so that
it was much more time-consuming than password registrationtime
(M: 44.88, SE: 8.68), t(52) = -2.729,p < 0.05. This can be viewed
as a positive or negative effect depending on the reader’s point of
view. It clearly makes the registration more interactive, which is a

good thing, and is likely to lead to more memorable passwords, but
it does significantly increase registration time.

Authentication
The mean time (seconds) required to login for successful sessions
was measured from user name entry until the login session was
completed and may also include more than one login attempt ifthey
were unsuccessful at first. We found that there was a significant dif-
ference between inkblots (M: 13.08, SE:0.532) and passwords (M:
11.15, SE:0.469), t(774) = -2.724,p < 0.05. This value includes
any additional time it would have taken for the user’s browser to
download and display the image representing the inkblot (gener-
ally less than 3KB in PNG format).

During the course of the experiment there were a total of 388 lo-
gin sessions for inkblot users and 412 login sessions for password
users. Of these there were a significantly lower number of sessions
with a login failure for the inkblot condition (23) than for the pass-
word condition (44),p< 0.05. This puts the mean number of failed
sessions for passwords at 11% and inkblots at 6%.

However, when we look at the failed sessions in more detail we
discover that within a login attempt session the average number of
attempts at getting the password correct per session is somewhat
different. We found that there was an average of 1.18 attempts
(SE: 0.118) per session for a password while inkblots required an
average of 1.96 attempts (SE: 0.493). Our results indicate that there
was borderline significance (t(65) = -1.985,p = 0.051) which may
warrant further investigation. Thus inkblot users are morelikely to
get it right first time but may make more attempts to login if they
fail the first time.

We also considered the number of sessions which were regarded
as “total failures” ie. sessions within which there was a failed login
attempt (or a sequence of failed login attempts) but no eventual
success indicating that the user gave up. We found that therewas
no significant difference in this respect (3 failed inkblot sessions, 2
failed password sessions,p > 0.05).

6.4 Are Inkblots Efficacious Password Cues?
Efficacy metrics, as outlined in Section 3.3, aredescriptiveness,

strengthanddurability. In terms of descriptiveness and strength,
these results appear to conflict with the results of our previous ex-
periment. The length of response decreased significantly once users
were asked to perform this task within a live authenticationsystem,
and this impacts the strength of the password. Furthermore,pro-
vided textual descriptions were shorter and less descriptive, and,
indeed, some appeared to have nothing to do with the provided
cue, so the inkblot fails the descriptiveness test as well. This re-
sult strengthens findings by Brostoffet al. [23] during evaluation
of the Passfaces1 authentication mechanism where usage of an au-
thentication system in real life differed significantly from lab-based
experimentation.

This experiment shows that when the user knows that the inkblot
description is going to be used frequently as a password, he or she
provides a much shorter description than would be provided if the
description was only going to be provided once or twice in a lab-
based experiment. This is perfectly reasonable, because users em-
phasise convenience over security. Hence the length of response
and bits per char are basically the same as passwords. This israther
disappointing since it was hoped that the presence of the inkblot
would allay users’ fears of forgetting their passwords and there-
fore encourage them to choose longer (and stronger) passwords,
the point of the whole exercise.

Finally, as regards durability, the inkblot usersdid appear to have

1http://www.realuser.com



less trouble remembering their textual descriptions, although this
obviously does not apply to the four users who did not providea
inkblot description.

This confirms the findings of Dhamija and Perrig [24] that peo-
ple are only willing to expend the minimum effort in managing
their passwords. Our results indicate that the descriptions offered
by users are of comparable length and complexity to traditional
passwords but with the problem that they will tend to includecom-
mon stop-words in their description which weakens the password.
This answers the second question posed in the introduction:users
do notutilise the cues, preferring to rely on their own memory ca-
pabilities.

7. CONCLUSION
We investigated Stubblefield and Simon’s proposal that pass-

words could be cued by using inkblot-like images. Inkblot-type
abstract images did indeed elicit the longest and strongesttextual
descriptions and appeared to be suitable.

However, the final experiment shows that the inkblots werenot
used by the users. It did not appear to encourage them to strengthen
their passwords and they did not exploit the true potential of their
inkblot in coming up with a textual description thereof, probably
because users anticipate the extra effort involved in continuously
entering the long description at each authentication attempt with
little enthusiasm.

We have to conclude that, whereas the inkblots appear theoret-
ically viable in terms of cueing passwords, the end-user’s desire
for convenience and speed of access led them not to exploit the
potential for cueing provided by the inkblot. Perhaps the only con-
clusion is that the combination of convenience-seeking users and
passwords is doomed to failure. If this is the case then any auxil-
iary efforts to strengthen the mechanism, such as the one proposed
by Stubblefield and Simon, are futile.
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APPENDIX
Faces: Collected from the Essex University Computer Vision Fa-
cial Databases[25] “face94” and “face95” and were chosen torep-
resent an equal mix of male and female faces with a range of phys-
ical features. Only images that were clearly visible with similar
scale and without distracting backgrounds were considered.
Fractals: generated using a commercial program Ultra Fractal[26].



Variations within the image class were obtained by changingthe al-
gorithm used to generate the fractal in addition to varying the view-
ing position and colouring algorithms.
Inkblots The inkblots were generated by a custom PHP script. The
inkblots were built by dropping “blots” onto a canvas and ensuring
the next blot landed within a fixed area of the previous blot. The
canvas was then mirrored to create the final inkblot. The images
were varied by changing the values of variables which control the
number of blots, blot diameter, colour and distance betweenthe
blots.
Snowflakes: generated using A.I. Studio Snowflake Generator[27]
and variations within the images were achieved primarily byvary-
ing the number and complexity of the rays along with scaling and
position details.
Textures: obtained from the CUReT[28] texture database and were
chosen to represent a range of different textures includingboth
man-made and natural textures.
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